?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄 첨부
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄 첨부

 

Aleix G. Güell†*, Anatolii S. Cuharuc†, Yang-Rae Kim†, Guohui Zhang, Sze-yin Tan, Neil Ebejer, Patrick R. Unwin*

[† contributed equally]

 

ACS Nano 2015, 9(4), 3558−3571


Publication online: March 10, 2015
Publication date: April 28, 2015
DOI: 10.1021/acsnano.5b00550
ISSN: 1936-0851
Journal country: United States
Publisher: AMER CHEMICAL SOC
URL: http://pubs.acs.org/doi/abs/10.1021/acsnano.5b00550
 

Abstract: The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)63+/2+ as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)63+/2+, is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)63+/2+ is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)63+/2+. These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.

 

Download: 24_ACS Nano.pdf


List of Articles
번호 카테고리 제목 글쓴이 날짜 조회 수
30 30. Nanoscale electrocatalysis of hydrazine electro-oxidation at blistered graphite electrodes, ACS Appl. Mater. Interfaces 2016, 8(44), 30458–30466 Sharel P. E, Yang-Rae Kim, David Perry, Cameron L. Bentley, and Patrick R. Unwin* ChemElectroChem 2016, 3(12), 2189−2195 Publication online: Oct... 김양래 2018.02.22 1818
29 2016 29. Electrochemical impedance spectroscopy at well controlled dc bias for nanoporous platinum microelectrode in embryo brain, ChemElectroChem 2016, 3(12), 2189−2195 file 김양래 2018.02.02 838
28 Post-doc (2011~2015) 28. Light-guided electrodeposition of non-noble catalyst patterns for photoelectrochemical hydrogen evolution, Energy and Environmental Science 2015, 8(12), 3654−3662 file 김양래 2016.02.02 1594
27 Post-doc (2011~2015) 27. Impact of surface chemistry on nanoparticle-electrode interactions in the electrochemical detection of nanoparticle collisions, Langmuir 2015, 31(43), 11932−11942 file 김양래 2016.02.02 31189
26 Post-doc (2011~2015) 26. Time-resolved detection and analysis of single nanoparticle electrocatalytic impacts, Journal of the American Chemical Society 2015, 137(34), 10902−10905 file 김양래 2016.02.02 70721
25 Post-doc (2011~2015) 25. Nucleation and aggregative growth of palladium nanoparticles on carbon electrodes: experiment and kinetic model, Journal of Physical Chemistry C 2015, 119(30), 17389−17397 file 김양래 2016.02.02 293426
» Post-doc (2011~2015) 24. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges, ACS Nano 2015, 9(4), 3558−3571 Aleix G. Güell†*, Anatolii S. Cuharuc†, Yang-Rae Kim†, Guohui Zhang, Sze-yin Tan, Neil Ebejer, Patrick R. Unwin* [† c... file 김양래 2016.02.02 16865
23 Post-doc (2011~2015) 23. Surface coverage and size effects on electrochemical oxidation of uniform gold nanoparticles, Electrochemistry Communications 2015, 53(1), 11−14 file 김양래 2016.02.02 27814
22 Post-doc (2011~2015) 22. Electrochemical signal amplification for immunosensor based on 3D interdigitated array electrodes, Analytical Chemistry 2014, 86(12), 5991−5998 file 김양래 2016.02.01 835
21 Post-doc (2011~2015) 21. Tunable decoration of reduced graphene oxide with Au nanoparticles for the oxygen reduction reaction, Advanced Functional Materials 2014, 24(19), 2764−2771 file 김양래 2016.02.01 4632
20 Post-doc (2011~2015) 20. Modulation of quinone PCET reaction by Ca2+ ion captured by calix[4]quinone in water, Journal of the American Chemical Society 2013, 135(50), 18957−18967 file 김양래 2016.02.01 1544
19 Post-doc (2011~2015) 19. Electrokinetic concentration on a microfluidic chip using polyelectrolytic gel plugs for small molecule immunoassay, Electrochimica Acta 2013, 110(1), 164−171 file 김양래 2016.02.01 1387
18 Post-doc (2011~2015) 18. Enhanced electrochemical reactions of 1,4-benzoquinone at nanoporous electrodes, Physical Chemistry Chemical Physics 2013, 15(26), 10645−10653 file 김양래 2016.02.01 1142
17 Post-doc (2011~2015) 17. Immunosensor based on electrogenerated chemiluminescence using Ru(bpy)32+-doped silica nanoparticles and calix[4]crown-5 self-assembled monolayers, Electroanalysis 2013, 25(4), 1056−1063 file 김양래 2016.02.01 642
16 Post-doc (2011~2015) 16. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells, Journal of Materials Chemistry B 2013, 1(7), 933−938 file 김양래 2016.01.30 857491
15 Post-doc (2011~2015) 15. Charged nanomatrices as efficient platforms for modulating cell adhesion and shape, Tissue Engineering, Part C: Methods 2012, 18(12), 913−923 file 김양래 2016.01.29 298273
14 Post-doc (2011~2015) 14. A BODIPY-functionalized bimetallic probe for sensitive and selective color-fluorometric chemosensing of Hg2+, Analyst 2012, 137(17), 3914−3916 file 김양래 2016.01.29 653
13 Post-doc (2011~2015) 13. In-channel electrochemical detection in the middle of microchannel under high electric field, Analytical Chemistry 2012, 84(2), 901−907 file 김양래 2016.01.29 938
12 Post-doc (2011~2015) 12. Gold microshell tip for in situ electrochemical raman spectroscopy, Advanced Materials 2012, 24(3), 421−424 file 김양래 2016.01.29 3108
11 Post-doc (2011~2015) 11. Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide, Electrochimica Acta 2012, 59(1), 509−514 file 김양래 2016.01.29 1320
Board Pagination Prev 1 2 Next
/ 2

로그인

로그인폼

로그인 유지